
1

INDEX Funktionsbeschreibungen

Mathematical Procedures __ 3
ABS (return absolute value) ___ 4
INRANGE (check number within range) ___ 5
INT (truncate fraction) ___ 6
LOGE (return natural logarithm)__ 7
LOG10 (return base 10 logarithm) __ 8
RANDOM (return random number) ___ 9
ROUND (return rounded number) ___ 10
SQRT (return square root)__ 11

Trigonometric Procedures __ 12
SIN (return sine) ___ 13
COS (return cosine)___ 14
TAN (return tangent)__ 15
ASIN (return arcsine) ___ 16
ACOS (return arccosine) ___ 17
ATAN (return arctangent) __ 18

String Procedures__ 19
ALL (return repeated characters) __ 20
CENTER (return centered string) __ 21
CHOOSE (return chosen value) ___ 22
CHR (return character from ASCII) __ 23
CLIP (return string without trailing spaces) __ 24
DEFORMAT (return unformatted numbers from string) ______________________________________ 25
FORMAT (return formatted numbers into a picture) ___ 26
INLIST (return entry in list) __ 27
INSTRING (return substring position) __ 28
LEFT (return left justified string) __ 29
LEN (return length of string)__ 30
LOWER (return lower case) __ 31
NUMERIC (return numeric string) ___ 32
RIGHT (return right justified string) __ 33
SUB (return substring of string) ___ 34
UPPER (return upper case) ___ 35
VAL (return ASCII value)__ 36

Bit Manipulation Procedures __ 37
BAND (return bitwise AND) ___ 38
BOR (return bitwise OR)___ 39
BXOR (return bitwise exclusive OR) ___ 40
BSHIFT (return shifted bits) __ 41

Date / Time Procedures ___ 42
Standard Date ___ 43
Standard Time ___ 44
TODAY (return system date) ___ 45
CLOCK (return system time) ___ 46
DAY (return day of month)___ 48
MONTH (return month of date) ___ 49
YEAR (return year of date) ___ 50
AGE (return age from base date)___ 51

Picture Tokens __ 52
Numeric and Currency Pictures__ 53
Scientific Notation Pictures___ 55
String Pictures ___ 56
Date Pictures __ 57
Time Pictures__ 59

2

Special Characters ___ 60

Expressions ___ 61
Expression Evaluation ___ 62
Arithmetic Operators__ 63
Logical Operators __ 64
Numeric Constants ___ 65
Numeric Expressions__ 66
String Constants__ 67
The Concatenation Operator __ 68
String Expressions__ 69
Implicit String Arrays and String Slicing __ 70
Logical Expressions___ 71
Simple Assignment Statements __ 72
Operating Assignment Statements__ 73

BCD Operations and Procedures ___ 74

3

Mathematical Procedures
ABS (return absolute value)
INRANGE (check number within range)
INT (truncate fraction)
LOGE (return natural logarithm)
LOG10 (return base 10 logarithm)
RANDOM (return random number)
ROUND (return rounded number)
SQRT (return square root)

4

ABS (return absolute value)
ABS(expression)

ABS Returns absolute value.

expression A constant, variable, or expression.
The ABS procedure returns the absolute value of an expression. The absolute value of a number is
always positive (or zero).

Return Data Type: REAL or DECIMAL

Example:
C = ABS(A - B) !C is absolute value of the difference
IF B < 0 THEN B = ABS(B). !If b is negative make it positive

See Also:

BCD Operations and Procedures

5

INRANGE (check number within range)
INRANGE(expression,low,high)

INRANGE Return number in valid range.

expression A numeric constant, variable, or expression.

low A numeric constant, variable, or expression of the lower boundary of the range.

high A numeric constant, variable, or expression of the upper boundary of the range.
The INRANGE procedure compares a numeric expression to an inclusive range of numbers. If the
value of the expression is within the range, the procedure returns the value 1 for "true." If the
expression is greater than the high parameter, or less than the low parameter, the procedure returns a
zero for "false."

Return Data Type: LONG

Example:
IF INRANGE(Date % 7,1,5) !If this is a week day
DO WeekdayRate ! use the weekday rate

ELSE !Otherwise
DO WeekendRate ! use the weekend rate

END

6

INT (truncate fraction)
INT(expression)

INT Return integer.

expression A numeric constant, variable, or expression.
The INT procedure returns the integer portion of a numeric expression. No rounding is performed, and
the sign remains unchanged.

Return Data Type: REAL or DECIMAL

Example:
!INT(8.5) returns 8
!INT(-5.9) returns -5

x = INT(y) !Return integer portion of y variable contents

See Also:

BCD Operations and Procedures

ROUND

7

LOGE (return natural logarithm)
LOGE(expression)

LOGE Returns the natural logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is less than
zero, the return value is zero. The natural logarithm is undefined for values less than
zero.

The LOGE (pronounced "log-e") procedure returns the natural logarithm of a numeric expression. The
natural logarithm of a value is the power to which e must be raised to equal that value. The value of e
used internally by the Clarion library for these calculations is 2.71828182846.

Return Data Type: REAL

Example:
!LOGE(2.71828182846) returns 1
!LOGE(1) returns 0

LogVal = LOGE(Val) !Get the natural log of Val

See Also:

LOG10

8

LOG10 (return base 10 logarithm)
LOG10(expression)

LOG10 Returns base 10 logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is zero or
less, the return value will be zero. The base 10 logarithm is undefined for values less
than or equal to zero.

The LOG10 (pronounced "log ten") procedure returns the base 10 logarithm of a numeric expression.
The base 10 logarithm of a value is the power to which 10 must be raised to equal that value.

Return Data Type: REAL

Example:
!LOG10(10) returns 1
!LOG10(1) returns 0

LogStore = LOG10(Var) !Store the log 10 of var

See Also:

LOGE

9

RANDOM (return random number)
RANDOM(low,high)

RANDOM Returns random integer.

low A numeric constant, variable, or expression for the lower boundary of the range.

high A numeric constant, variable, or expression for the upper boundary of the range.
The RANDOM procedure returns a random integer between the low and high values, inclusively. The
low and high parameters may be any numeric expression, but only their integer portion is used for the
inclusive range.

Return Data Type: LONG

Example:
Num BYTE,DIM(49)
LottoNbr BYTE,DIM(6)
CODE
CLEAR(Num)
CLEAR(LottoNbr)
LOOP X# = 1 TO 6

 LottoNbr[X#] = RANDOM(1,49) !Pick numbers for Lotto
IF NOT Num[LottoNbr[X#]]
Num[LottoNbr[X#]] = 1

ELSE
X# -= 1

. .

10

ROUND (return rounded number)
ROUND(expression,order)

ROUND Returns rounded value.

expression A numeric constant, variable, or expression.

order A numeric expression with a value equal to a power of ten, such as 1, 10, 100, 0.1,
0.001, etc. If the value is not an even power of ten, the next lowest power is used; 0.55
will use 0.1 and 155 will use 100.

The ROUND procedure returns the value of an expression rounded to a power of ten. If the order is a
LONG or DECIMAL Base Type, then rounding is performed as a BCD operation. Note that if you want
to round a real number larger than 1e30, you should use ROUND(num,1.0e0), and not
ROUND(num,1). The ROUND procedure is very efficient ("cheap") as a BCD operation and should be
used to compare REALs to DECIMALs at decimal width.

Return Data Type: DECIMAL or REAL

Example:
!ROUND(5163,100) returns 5200
!ROUND(657.50,1) returns 658
!ROUND(51.63594,.01) returns 51.64

Commission = ROUND(Price / Rate,.01) !Round the commission to the nearest cent

See Also:

BCD Operations and Procedures

11

SQRT (return square root)
SQRT(expression)

SQRT Returns square root.

expression A numeric constant, variable, or expression. If the value of the expression is less than
zero, the return value is zero.

The SQRT procedure returns the square root of the expression. If X represents any positive real
number, the square root of X is a number that, when multiplied by itself, produces a product equal to
X.

Return Data Type: REAL

Example:
Length = SQRT(X^2 + Y^2) !Find the distance from 0,0 to x,y (pythagorean theorem)

12

Trigonometric Procedures
Trigonometric procedures return values representing angles and ratios of the sides of a right triangle
(a triangle containing a 90-degree angle). The hypotenuse is the side of the triangle opposite the right
(90-degree) angle. For either of the other two angles, the adjacent side forms the angle with the
hypotenuse, and the opposite side is opposite the angle. (See any good Trigonometry text for further
explanation of these terms.)

Angles are expressed in radians. PI is a constant which represents the ratio of the circumference and
radius of a circle. There are 2*PI radians (or 360 degrees) in a circle.

The following equates provide high precision constants for PI and the conversion factors between
degrees and radians.

PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(.0174532925199) !Number of radians in a degree

See Also:

SIN (return sine)
COS (return cosine)
TAN (return tangent)
ASIN (return arcsine)
ACOS (return arccosine)
ATAN (return arctangent)

13

SIN (return sine)
SIN(radians)

SIN Returns sine.

radians A numeric constant, variable or expression for the angle expressed in radians.
The SIN procedure returns the trigonometric sine of an angle measured in radians. The sine is the
ratio of the length of the angle's opposite side divided by the length of the hypotenuse.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
SineAngle = SIN(Angle) !Get the sine of 45 degree angle

See Also:

TAN

ATAN

ASIN

COS

ACOS

14

COS (return cosine)
COS(radians)

COS Returns cosine.

radians A numeric constant, variable or expression for the angle in radians.
The COS procedure returns the trigonometric cosine of an angle measured in radians. The cosine is
the ratio of the length of the angle's adjacent side divided by the length of the hypotenuse.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
CosineAngle = COS(Angle) !Get the cosine of 45 degree angle

See Also:

TAN

ATAN

SIN

ASIN

ACOS

15

TAN (return tangent)
TAN(radians)

TAN Returns tangent.

radians A numeric constant, variable or expression for the angle in radians.
The TAN procedure returns the trigonometric tangent of an angle measured in radians. The tangent is
the ratio of the angle's opposite side divided by its adjacent side.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
TangentAngle = TAN(Angle) !Get the tangent of 45 degree angle

See Also:

ATAN

SIN

ASIN

COS

ACOS

16

ASIN (return arcsine)
ASIN(expression)

ASIN Returns inverse sine.

expression A numeric constant, variable, or expression for the value of the sine.
The ASIN procedure returns the inverse sine. The inverse of a sine is the angle that produces the
sine. The return value is the angle in radians.

Return Data Type: REAL

Example:
InvSine = ASIN(SineAngle) !Get the Arcsine

See Also:

TAN

ATAN

SIN

COS

ACOS

17

ACOS (return arccosine)
ACOS(expression)

ACOS Returns inverse cosine.

expression A numeric constant, variable, or expression for the value of the cosine.
The ACOS procedure returns the inverse cosine. The inverse of a cosine is the angle that produces
the cosine. The return value is the angle in radians.

Return Data Type: REAL

Example:
InvCosine = ACOS(CosineAngle) !Get the Arccosine

See Also:

TAN

ATAN

SIN

ASIN

COS

18

ATAN (return arctangent)
ATAN(expression)

ATAN Returns inverse tangent.

expression A numeric constant, variable, or expression for the value of the tangent.
The ATAN procedure returns the inverse tangent. The inverse of a tangent is the angle that produces
the tangent. The return value is the angle in radians.

Return Data Type REAL

Example:
InvTangent = ATAN(TangentAngle) !Get the Arctangent

See Also:

TAN

SIN

ASIN

COS

ACOS

19

String Procedures
ALL (return repeated characters)
CENTER (return centered string)
CHOOSE (return chosen value)
CHR (return character from ASCII)
CLIP (return string without trailing spaces)
DEFORMAT (return unformatted numbers from string)
FORMAT (return formatted numbers into a picture)
INLIST (return entry in list)
INSTRING (return substring position)
LEFT (return left justified string)
LEN (return length of string)
LOWER (return lower case)
NUMERIC (return numeric string)
RIGHT (return right justified string)
SUB (return substring of string)
UPPER (return upper case)
VAL (return ASCII value)

20

ALL (return repeated characters)
ALL(string [,length])

ALL Returns repeated characters.

string A string expression containing the character sequence to be repeated.

length The length of the return string. If omitted the length of the return string is 255
characters.

The ALL procedure returns a string containing repetitions of the character sequence string.

Return Data Type: STRING

Example:
Starline = ALL('*',25) !Get 25 asterisks
Dotline = ALL('.') !Get 255 dots

21

CENTER (return centered string)
CENTER(string [,length])

CENTER Returns centered string.

string A string constant, variable or expression.

length The length of the return string. If omitted, the length of the string parameter is used.
The CENTER procedure first removes leading and trailing spaces from a string, then pads it with
leading and trailing spaces to center it within the length, and returns a centered string.

Return Data Type: STRING

Example:
 !CENTER('ABC',5) returns ' ABC '
 !CENTER('ABC ') returns ' ABC '
 !CENTER(' ABC') returns ' ABC '

 Message = CENTER(Message) !Center the message
Rpt:Title = CENTER(Name,60) !Center the name

See Also:

LEFT

RIGHT

22

CHOOSE (return chosen value)
CHOOSE(| expression ,value, value [,value...] |)

| condition ,value, value |

CHOOSE Returns the chosen value from a list of possible values.

expression An arithmetic expression which determines which value parameter to return. This
expression must resolve to a positive integer.

value A variable, constant, or expression for the procedure to return.

condition A logical expression which determines which of the two required value parameters to
return. When the expression is true, the first value is returned, and when false, the
second value is returned.

The CHOOSE procedure evaluates the expression or condition and returns the appropriate value
parameter. If the expression resolves to a positive integer, that integer selects the corresponding value
parameter for the CHOOSE procedure to return. If the expression evaluates to an out-of-range
integer, then CHOOSE returns the last value parameter.

When the condition evaluates to true, then CHOOSE returns the first value parameter. When the
condition evaluates to false, then CHOOSE returns the second value parameter.

The return data type is dependent upon the data types of the value parameters:
All Value Parameters Return Data Type
LONG LONG
DECIMAL or LONG DECIMAL
STRING STRING
DECIMAL, LONG, or STRING DECIMAL
anything else REAL

Return Data Type: LONG, DECIMAL, STRING, or REAL

Example:
 !CHOOSE(4,'A','B','C','D','E') returns 'D'
!CHOOSE(1 > 2,'A','B') returns 'B'

?MyControl{-PROP:Hide} = CHOOSE(SomeField = 0,TRUE,FALSE)
!Hide or unhide control, based on the value in SomeField

MyView{-PROP:Filter} = 'Weight > CHOOSE(Sex = ''M'',180,120)'
!VIEW filter to select "overweight" people of both sexes

See Also:

INLIST

23

CHR (return character from ASCII)
CHR(code)

CHR Returns the display character.

code A numeric expression containing a numeric ASCII character code.
The CHR procedure returns the ANSI character represented by the ASCII character code parameter.

Return Data Type: STRING

Example:
Stringvar = CHR(122) !Get lower case z
Stringvar = CHR(65) !Get upper case A

See Also:

VAL

24

CLIP (return string without trailing spaces)
CLIP(string)

CLIP Removes trailing spaces.

string A string expression.
The CLIP procedure removes trailing spaces from a string. The return string is a substring with no
trailing spaces. CLIP is frequently used with the concatenation operator in string expressions using
STRING data types.

CLIP is not normally needed with CSTRING data types, since these have a terminating character.
CLIP is also not normally needed with PSTRING data types, since these have a length byte.

When used in conjunction with the LEFT procedure, you can remove both leading and trailing spaces
(frequently called ALLTRIM in other languages).

Return Data Type: STRING

Example:
Name = CLIP(Last) & ', ' & CLIP(First) & Init & '.' !Full name in military order

AllTrimVar = CLIP(LEFT(MyVar)) !Trim leading and trailing spaces at once

See Also:

LEFT

25

DEFORMAT (return unformatted numbers from string)
DEFORMAT(string [,picture])

DEFORMAT Removes formatting characters from a numeric string.

string A string expression containing a numeric string.

picture A picture token, or the label of a CSTRING variable containing a picture token. If
omitted, the picture for the string parameter is used. If the string parameter was not
declared with a picture token, the return value will contain only characters that are
valid for a numeric constant.

The DEFORMAT procedure removes formatting characters from a numeric string, returning only the
numbers contained in the string. When used with a date or time picture (except those containing
alphabetic characters), it returns a STRING containing the Clarion Standard Date or Time.

Return Data Type: STRING

Example:
!DEFORMAT('$1,234.56') returns 1234.56
!DEFORMAT('309-53-9954') returns 309539954
!DEFORMAT('40A1-7',@P##A1-#P) returns 407

DialString = 'ATDT1' & DEFORMAT(Phone,@P(###)###-####P) & '<13,10>'
 !Get phone number for modem to dial

ClarionDate = DEFORMAT(dBaseDate,@D1) !Clarion Standard date from mm/dd/yy string

Data = '45,123' !Assign a formatted number to a string
Number = DEFORMAT(Data) ! then remove non-numeric characters

See Also:

FORMAT

Standard Date

Standard Time

26

FORMAT (return formatted numbers into a picture)
FORMAT(value,picture)

FORMAT Returns a formatted numeric string.

value A numeric expression for the value to be formatted.

picture A picture token or the label of a CSTRING variable containing a picture token.
The FORMAT procedure returns a numeric string formatted according to the picture parameter.

Return Data Type: STRING

Example:
Rpt:SocSecNbr = FORMAT(Emp:SSN,@P###-##-####P) !Format the soc-sec-nbr
Phone = FORMAT(DEFORMAT(Phone,@P###-###-####P),@P(###)###-####P)

 !Change phone format from dashes to parens
DateString = FORMAT(DateLong,@D1) !Format a date as a string

See Also:

DEFORMAT

27

INLIST (return entry in list)
INLIST(searchstring,liststring,liststring [,liststring...])

INLIST Returns item in a list.

searchstring A constant, variable, or expression that contains the value for which to search. If the
value is numeric, it is converted to a string before comparisons are made.

liststring The label of a variable or constant value to compare against the searchstring. If the
value is numeric, it is converted to a string before comparisons are made. There may
be up to 16 liststring parameters, and there must be at least two.

The INLIST procedure compares the contents of the searchstring against the values contained in each
liststring parameter. If a matching value is found, the procedure returns the number of the first liststring
parameter containing the matching value (relative to the first liststring parameter). If the searchstring is
not found in any liststring parameter, INLIST returns zero.

Return Data Type: LONG

Example:
 !INLIST('D','A','B','C','D','E') returns 4
!INLIST('B','A','B','C','D','E') returns 2

EXECUTE INLIST(Emp:Status,'Fulltime','Parttime','Retired','Consultant')
Scr:Message = 'All Benefits' !Full timer
Scr:Message = 'Holidays Only' !Part timer
Scr:Message = 'Medical/Dental Only' !Retired
Scr:Message = 'No Benefits' !Consultant

END

See Also:

CHOOSE

28

INSTRING (return substring position)
INSTRING(substring,string [,step] [,start])

INSTRING Searches for a substring in a string.

substring A string constant, variable, or expression that contains the string for which to search.
You should CLIP a variable substring so INSTRING will not look for a match that
contains the trailing spaces in the variable.

string A string constant, or the label of the STRING, CSTRING, or PSTRING variable to be
searched.

step A numeric constant, variable, or expression which specifies the step length of the
search. A step of 1 searches for the substring beginning at every character in the
string, a step of 2 starts at every other character, and so on. If step is omitted, the step
length defaults to the length of the substring.

start A numeric constant, variable, or expression which specifies where to begin the search
of the string. If omitted, the search starts at the first character position.

The INSTRING procedure steps through a string, searching for the occurrence of a substring. If the
substring is found, the procedure returns the step number on which the substring was found. If the
substring is not found in the string, INSTRING returns zero.

Return Data Type: UNSIGNED

Example:
 !INSTRING('DEF','ABCDEFGHIJ',1,1) returns 4
 !INSTRING('DEF','ABCDEFGHIJ',2,1) returns 0
 !INSTRING('DEF','ABCDEFGHIJ',2,2) returns 2
 !INSTRING('DEF','ABCDEFGHIJ',3,1) returns 2

Extension = SUB(FileSpec,INSTRING('.',FileSpec) + 1,3)
!Extract extension from file spec

IF INSTRING(CLIP(Search),Cus:Notes,1,1) !If search variable found
Scr:Message = 'Found' ! display message

END

See Also:

SUB

STRING

CSTRING

PSTRING

String Slicing

29

LEFT (return left justified string)
LEFT(string [,length])

LEFT Left justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If
omitted, length defaults to the length of the string.

The LEFT procedure returns a left justified string. Leading spaces are removed from the string.

Return Data Type: STRING

Example:
!LEFT(' ABC') returns 'ABC '

CompanyName = LEFT(CompanyName) !Left justify the company name

See Also:

RIGHT

CENTER

30

LEN (return length of string)
LEN(string)

LEN Returns length of a string.

string A string constant, variable, or expression.
The LEN procedure returns the length of a string. If the string parameter is the label of a STRING
variable, the procedure will return the declared length of the variable. If the string parameter is the
label of a CSTRING or PSTRING variable, the procedure will return the length of the contents of the
variable. Numeric variables are automatically converted to STRING intermediate values.

Return Data Type: UNSIGNED

Example:
IF LEN(CLIP(Title) & ' ' & CLIP(First) & ' ' & CLIP(Last)) > 30

!If full name won't fit
Rpt:Name = CLIP(Title) & ' ' & SUB(First,1,1) & '. ' & Last

! use first initial
ELSE
Rpt:Name = CLIP(Title) & ' ' & CLIP(First) & ' ' & CLIP(Last)

! else use full name
END
Rpt:Title = CENTER(Cus:Name,LEN(Rpt:Title)) !Center the name in the title

31

LOWER (return lower case)
LOWER(string)

LOWER Converts a string to all lower case.

string A string constant, variable, or expression for the string to be converted.
The LOWER procedure returns a string with all letters converted to lower case.

Return Data Type: STRING

Example:
!LOWER('ABC') returns 'abc'

Name = SUB(Name,1,1) & LOWER(SUB(Name,2,19)) !Make the rest of the name lower case

See Also:

UPPER

ISUPPER

ISLOWER

32

NUMERIC (return numeric string)
NUMERIC(string)

NUMERIC Validates all numeric string.

string A string constant, variable, or expression.
The NUMERIC procedure returns the value 1 (true) if the string only contains a valid numeric value. It
returns zero (false) if the string contains any non-numeric characters. Valid numeric characters are the
digits 0 through 9, a leading minus sign, and a decimal point. DEFORMAT is used to return
unformatted numbers from a formatted string.

Return Data Type: UNSIGNED

Example:
!NUMERIC('1234.56') returns 1
!NUMERIC('1,234.56') returns 0
!NUMERIC('-1234.56') returns 1
!NUMERIC('1234.56-') returns 0

IF NOT NUMERIC(PartNumber) !If part number is not numeric
DO ChkValidPart ! check for valid part number

END !End if

See Also:

DEFORMAT

33

RIGHT (return right justified string)
RIGHT(string [,length])

RIGHT Right justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If
omitted, the length is set to the length of the string.

The RIGHT procedure returns a right justified string. Trailing spaces are removed, then the string is
right justified and returned with leading spaces.

Return Data Type: STRING

Example:
!RIGHT('ABC ') returns ' ABC'

Message = RIGHT(Message) !Right justify the message

See Also:

LEFT

CENTER

34

SUB (return substring of string)
SUB(string,position,length)

SUB Returns a portion of a string.

string A string constant, variable or expression.

position A integer constant, variable, or expression. If positive, it points to a character position
relative to the beginning of the string. If negative, it points to the character position
relative to the end of the string (i.e., a position value of -3 points to a position 3
characters from the end of the string).

length A numeric constant, variable, or expression of number of characters to return.
The SUB procedure parses out a sub-string from a string by returning length characters from the
string, starting at position.

The SUB procedure is similar to the "string slicing" operation on STRING, CSTRING, and PSTRING
variables. SUB is less flexible and efficient than string slicing, but SUB is "safer" because it ensures
that the operation does not overflow the bounds of the string.

"String slicing" is more flexible than SUB because it may be used on both the destination and source
sides of an assignment statement, while the SUB procedure can only be used as the source. It is more
efficient because it takes less memory than individual character assignments or the SUB procedure
(however, no bounds checking occurs).

To take a "slice" of a string, the beginning and ending character numbers are separated by a colon (:)
and placed in the implicit array dimension position within the square brackets ([]) of the string. The
position numbers may be integer constants, variables, or expressions. If variables are used, there
must be at least one blank space between the variable name and the colon separating the beginning
and ending number (to prevent PREfix confusion).

Return Data Type: STRING

Example:
 !SUB('ABCDEFGHI',1,1) returns 'A'
 !SUB('ABCDEFGHI',-1,1)returns 'I'
 !SUB('ABCDEFGHI',4,3) returns 'DEF'
Extension = SUB(FileName,INSTRING('.',FileName,1,1)+1,3)
 !Get the file extension using SUB procedure
Extension = FileName[(INSTRING('.',FileName,1,1)+1) :

(INSTRING('.',FileName,1,1)+3)]
 !The same operation using string slicing

See Also:

INSTRING

STRING

CSTRING

PSTRING

String Slicing

35

UPPER (return upper case)
UPPER(string)

UPPER Returns all upper case string.

string A string constant, variable, or expression for the string to be converted.
The UPPER procedure returns a string with all letters converted to upper case.

Return Data Type: STRING

Example:
!UPPER('abc') returns 'ABC'

Name = UPPER(Name) !Make the name upper case

See Also:

LOWER

ISUPPER

ISLOWER

36

VAL (return ASCII value)
VAL(character)

VAL Returns ASCII code.

character A one-byte string containing an ANSI character.
The VAL procedure returns the ASCII code of a character.

Return Data Type: LONG

Example:
!VAL('A') returns 65
!VAL('z') returns 122

CharVal = VAL(StrChar) !Get the ASCII value of the string character

See Also:

CHR

37

Bit Manipulation Procedures
BAND (return bitwise AND)
BOR (return bitwise OR)
BXOR (return bitwise exclusive OR)
BSHIFT (return shifted bits)

38

BAND (return bitwise AND)
BAND(value,mask)

BAND Performs bitwise AND operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to
a LONG data type prior to the operation, if necessary.

The BAND procedure compares the value to the mask, performing a Boolean AND operation on each
bit. The return value is a LONG integer with a one (1) in the bit positions where the value and the
mask both contain one (1), and zeroes in all other bit positions.

BAND is usually used to determine whether an individual bit, or multiple bits, are on (1) or off (0) within
a variable.

Return Data Type: LONG

Example:
!BAND(0110b,0010b) returns 0010b !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
IF BAND(RateType,Female) | !If female

AND BAND(RateType,Over25) ! and over 25
DO BaseRate ! use base premium

ELSIF BAND(RateType,Male) !If male
DO AdjBase ! adjust base premium

END

See Also:

BOR

BXOR

BSHIFT

39

BOR (return bitwise OR)
BOR(value,mask)

BOR Performs bitwise OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to
a LONG data type prior to the operation, if necessary.

The BOR procedure compares the value to the mask, performing a Boolean OR operation on each bit.
The return value is a LONG integer with a one (1) in the bit positions where the value, or the mask, or
both, contain a one (1), and zeroes in all other bit positions.

BOR is usually used to unconditionally turn on (set to one), an individual bit, or multiple bits, within a
variable.

Return Data Type: LONG

Example:
!BOR(0110b,0010b) returns 0110b !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
RateType = BOR(RateType,Over25) !Turn on over 25 bit
RateType = BOR(RateType,Male) !Set rate to male

See Also:

BAND

BXOR

BSHIFT

40

BXOR (return bitwise exclusive OR)
BXOR(value,mask)

BXOR Performs bitwise exclusive OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to
a LONG data type prior to the operation, if necessary.

The BXOR procedure compares the value to the mask, performing a Boolean XOR operation on each
bit. The return value is a LONG integer with a one (1) in the bit positions where either the value or the
mask contain a one (1), but not both. Zeroes are returned in all bit positions where the bits in the value
and mask are alike.

BXOR is usually used to toggle on (1) or off (0) an individual bit, or multiple bits, within a variable.

Return Data Type: LONG

Example:
!BXOR(0110b,0010b) returns 0100b !0110b = 6, 0100b = 4, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
Over65 EQUATE(1100b) !Over age 65 mask
CODE
RateType = BXOR(RateType,Over65) !Toggle over 65 bits

See Also:

BAND

BOR

BSHIFT

41

BSHIFT (return shifted bits)
BSHIFT(value,count)

BSHIFT Performs the bit shift operation.

value A numeric constant, variable, or expression. The value is converted to a LONG data
type prior to the operation, if necessary.

count A numeric constant, variable, or expression for the number of bit positions to be
shifted. If count is positive, value is shifted left. If count is negative, value is shifted
right.

The BSHIFT procedure shifts a bit value by a bit count. The bit value may be shifted left (toward the
high order), or right (toward the low order). Zero bits are supplied to fill vacated bit positions when
shifting.

Return Data Type: LONG

Example:
!BSHIFT(0110b,1) returns 1100b
!BSHIFT(0110b,-1) returns 0011b

Varswitch = BSHIFT(20,3) !Multiply by eight
Varswitch = BSHIFT(Varswitch,-2) !Divide by four

See Also:

BAND

BOR

BXOR

42

Date / Time Procedures
Standard Date
Standard Time
TODAY (return system date)
CLOCK (return system time)
DATE (return standard date)
DAY (return day of month)
MONTH (return month of date)
YEAR (return year of date)
AGE (return age from base date)

43

Standard Date
A Clarion standard date is the number of days that have elapsed since December 28, 1800. The range
of accessible dates is from January 1, 1801 (standard date 4) to December 31, 9999 (standard date
2,994,626). Date procedures will not return correct values outside the limits of this range. The
standard date calendar also adjusts for each leap year within the range of accessible dates. Dividing a
standard date by modulo 7 gives you the day of the week: zero = Sunday, one = Monday, etc.

The LONG data type with a date format (@D) display picture is normally used for a standard date.
Data entry into any date format picture with a two-digit year defaults to the century of next 20 or
previous 80 years. For example, entering 01/01/01 results in 01/01/2001 if the current year (per the
system clock) is greater than 1980, and 01/01/1901 if the current year is 1980 or earlier.

The DATE data type is a data format used in the Btrieve Record Manager and some other file
systems. A DATE field is internally converted to LONG containing the Clarion standard date before
any mathematical or date procedure operation is performed. Therefore, DATE should be used for
external file compatibility, and LONG is normally used for other dates.

See Also:

DAY

MONTH

YEAR

TODAY

DATE

44

Standard Time
A Clarion standard time is the number of hundredths of a second that have elapsed since midnight,
plus one (1). The valid range is from 1 (defined as midnight) to 8,640,000 (defined as 11:59:59.99
PM). A standard time of one is exactly equal to midnight to allow a zero value to be used to detect no
time entered. Although time is expressed to the nearest hundredth of a second, the system clock is
only updated 18.2 times a second (approximately every 5.5 hundredths of a second).

The LONG data type with a time format (@T) display picture is normally used for a standard time. The
TIME data type is a data format used in the Btrieve Record Manager. A TIME field is internally
converted to LONG containing the Clarion standard time before any mathematical or time procedure
operation is performed. Therefore, TIME should be used for external Btrieve file compatibility, and
LONG should normally be used for other times.

See Also:

CLOCK

45

TODAY (return system date)
TODAY()

The TODAY procedure returns the operating system date as a standard date. The range of possible
dates is from January 1, 1801 (standard date 4) to December 31, 2099 (standard date 109,211).

Return Data Type: LONG

Example:
OrderDate = TODAY() !Set the order date to system date

See Also:

Standard Date

DAY

MONTH

YEAR

SETTODAY

DATE

46

CLOCK (return system time)
CLOCK()

The CLOCK procedure returns the time of day from the operating system time in standard time
(expressed as hundredths of a second since midnight, plus one). Although the time is expressed to
the nearest hundredth of a second, the system clock is only updated 18.2 times a second
(approximately every 5.5 hundredths of a second).

Return Data Type: LONG

Example:
Time = CLOCK() !Save the system time

See Also:

Standard Time

SETCLOCK

47

 DATE (return standard date)

DATE(month,day,year)

DATE Return standard date.

month A positive numeric constant, variable, or expression for the month.

day A positive numeric constant, variable, or expression for the day of the month.

year A numeric constant, variable or expression for the year. The valid range for a year
value is 00 through 99 (using "Intellidate" logic), or 1801 through 2099.

The DATE procedure returns a standard date for a given month, day, and year. The month and day
parameters do allow positive out-of-range values (zero or negative values are invalid). A month value
of 13 is interpreted as January of the next year. A day value of 32 in January is interpreted as the first
of February. Consequently, DATE(12,32,97), DATE(13,1,97), and DATE(1,1,98) all produce the same
result.

The century for a two-digit year parameter is resolved using the default "Intellidate" logic, which
assumes the date falls in the range of the next 20 or previous 80 years from the current operating
system date. For example, assuming the current year is 1998, if the year parameter is "15," the date
returned is in the year 2015, and if the year parameter is "60," the date returned is in 1960.

Return Data Type: LONG

Example:
HireDate = DATE(Hir:Month,Hir:Day,Hir:Year) !Compute hire date
FirstOfMonth = DATE(MONTH(TODAY()),1,YEAR(TODAY())) !Compute First day of month

See Also:

Standard Date

DAY

MONTH

YEAR

TODAY

48

DAY (return day of month)
DAY(date)

DAY Returns day of month.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING, or
PSTRING variable declared with a date picture token. The date must be a standard
date. A variable declared with a date picture token is automatically converted to a
standard date intermediate value.

The DAY procedure computes the day of the month (1 to 31) for a given standard date.

Return Data Type: LONG

Example:
OutDay = DAY(TODAY()) !Get the day from today's date
DueDay = DAY(TODAY()+2) !Calculate the return day

See Also:

Standard Date

MONTH

YEAR

TODAY

DATE

49

MONTH (return month of date)
MONTH(date)

MONTH Returns month in year.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING, or
PSTRING variable declared with a date picture token. The date must be a standard
date. A variable declared with a date picture token is automatically converted to a
standard date intermediate value.

The MONTH procedure returns the month of the year (1 to 12) for a given standard date.

Return Data Type: LONG

Example:
PayMonth = MONTH(DueDate) !Get the month from the date

See Also:

Standard Date

DAY

YEAR

TODAY

DATE

50

YEAR (return year of date)
YEAR(date)

YEAR Returns the year.

date A numeric constant, variable, expression, or the label of a string variable declared
with a date picture, containing a standard date. A variable declared with a date picture
is automatically converted to a standard date intermediate value.

The YEAR procedure returns a four digit number for the year of a standard date (1801 to 9999).

Return Data Type: LONG

Example:
IF YEAR(LastOrd) < YEAR(TODAY()) !If last order date not from this year
DO StartNewYear ! start new year to date totals

END

See Also:

Standard Date

DAY

MONTH

TODAY

DATE

51

AGE (return age from base date)
AGE(birthdate [,base date])

AGE Returns elapsed time.

birthdate A numeric expression for a standard date.

base date A numeric expression for a standard date. If this parameter is omitted, the operating
system date is used for the computation.

The AGE procedure returns a string containing the time elapsed between two dates. The age return
string is in the following format:

 1 to 60 days - 'nn DAYS'
 61 days to 24 months - 'nn MOS'
 2 years to 999 years - 'nnn YRS'

Return Data Type: STRING

Example:
Message = Emp:Name & 'is ' & AGE(Emp:DOB,TODAY()) & ' old today.'

See Also:

Standard Date

DAY

MONTH

YEAR

TODAY

DATE

52

Picture Tokens
Picture tokens provide a masking format for displaying and editing variables. There are seven types of
picture tokens: numeric and currency, scientific notation, string, date, time, pattern, and key-in
template.

Numeric and Currency Pictures
Scientific Notation Pictures
String Pictures
Date Pictures
Time Pictures

53

Numeric and Currency Pictures
@N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N All numeric and currency pictures begin with @N.

currency Either a dollar sign ($) or any string constant enclosed in tildes (~). When it precedes
the sign indicator and there is no fill indicator, the currency symbol "floats" to the left
of the high order digit. If there is a fill indicator, the currency symbol remains fixed in
the left-most position. If the currency indicator follows the size and grouping, it
appears at the end of the number displayed.

sign Specifies the display format for negative numbers. If a hyphen precedes the fill and
size indicators, negative numbers will display with a leading minus sign. If a hyphen
follows the size, grouping, places, and currency indicators, negative numbers will
display with a trailing minus sign. If parentheses are placed in both positions, negative
numbers will be displayed enclosed in parentheses. To prevent ambiguity, a trailing
minus sign should always have grouping specified.

fill Specifies leading zeros, spaces, or asterisks (*) in any leading zero positions, and
suppressesdefault grouping. If the fill is omitted, leading zeros are suppressed.

 0 (zero) Produces leading zeroes
 _ (underscore) Produces leading spaces
 * (asterisk) Produces leading asterisks

size The size is required to specify the total number of significant digits to display,
including the number of digits in the places indicator and any formatting characters.

grouping A grouping symbol, other than a comma (the default), can appear right of the size
indicator to specify a three digit group separator. To prevent ambiguity, a hyphen
grouping indicator should also specify the sign.

 . (period) Produces periods
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

places Specifies the decimal separator symbol and the number of decimal digits. The number
of decimal digits must be less than the size. The decimal separator may be a period (.),
grave accent (') (produces periods grouping unless overridden), or the letter "v" (used
only for STRING field storage declarationsnot for display).

 . (period) Produces a period
' (grave accent) Produces a comma
v Produces no decimal separator

B Specifies blank display whenever its value is zero.
The numeric and currency pictures format numeric values for screen display or in reports. If the value
is greater than the maximum value the picture can display, a string of pound signs (#) is displayed.

Example:
Numeric Result Format
@N9 4,550,000 Nine digits, group with commas (default)
@N_9B 4550000 Nine digits, no grouping, leading blanks if zero
@N09 004550000 Nine digits, leading zero
@N*9 ***45,000 Nine digits, asterisk fill, group with commas
@N9_ 4 550 000 Nine digits, group with spaces
@N9. 4.550.000 Nine digits, group with periods

Decimal Result Format
@N9.2 4,550.75 Two decimal places, period decimal separator
@N_9.2B 4550.75 Two decimal places, period decimal separator, no

grouping, blank if zero

54

@N_9'2 4550,75 Two decimal places, comma decimal separator
@N9.'2 4.550,75 Comma decimal separator, group with periods
@N9_'2 4 550,75 Comma decimal separator, group with spaces,

Signed Result Format
@N-9.2B -2,347.25 Leading minus sign, blank if zero
@N9.2- 2,347.25- Trailing minus sign
@N(10.2) (2,347.25) Enclosed in parens when negative

Dollar Currency Result Format
@N$9.2B $2,347.25 Leading dollar sign, blank if zero
@N$10.2- $2,347.25- Leading dollar sign, trailing minus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative

Int'l Currency Result Format
@N12_'2~ F~ 1 5430,50 F France
@N~L. ~12' L. 1.430.050 Italy
@N~£~12.2 £1,240.50 United Kingdom
@N~kr~12'2 kr1.430,50 Norway
@N~DM~12'2 DM1.430,50 Germany
@N12_'2~ mk~ 1 430,50 mk Finland
@N12'2~ kr~ 1.430,50 kr Sweden

Storage-Only Pictures:
Variable1 STRING(@N_6v2) !Declare as 6 bytes stored without decimal
CODE
Variable1 = 1234.56 !Assign value, stores '123456' in file
MESSAGE(FORMAT(Variable1,@N_7.2)) !Display with decimal point: '1234.56'

55

Scientific Notation Pictures
@Emsn[B]

@E All scientific notation pictures begin with @E.

m Determines the total number of characters in the format provided by the picture.

s Specifies the decimal separation character, and the grouping character when the n
value is greater than 3.

 . (period) period and comma
.. (period period) period and period
' (grave accent) comma and period
_.(underscore period) period and space

n Indicates the number of digits that appear to the left of the decimal point.

B Specifies that the format displays as blank when the value is zero.
The scientific notation picture formats very large or very small numbers. The format is a decimal
number raised by a power of ten.

Example:
Picture Value Result
@E9.0 1,967,865 .20e+007
@E12.1 1,967,865 1.9679e+006
@E12.1B 0
@E12.1 -1,967,865 -1.9679e+006
@E12.1 .000000032 3.2000e-008
@E12_.4 1,967,865 1 967.865e+003

56

String Pictures
@Slength

@S All string pictures begin with @S.

length Determines the number of characters in the picture format.
A string picture describes an unformatted string of a specific length.

Example:
Name STRING(@S20) !A 20 character string field

57

Date Pictures
@Dn [s] [direction [range]] [B]

@D All date pictures begin with @D.

n Determines the date picture format. Date picture formats range from 1 through 18. A
leading zero (0) indicates a zero-filled day or month.

s A separation character between the month, day, and year components. If omitted, the
slash (/) appears.

 . (period) Produces periods
' (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

direction A right or left angle bracket (> or <) that specifies the "Intellidate" direction (>
indicates future, < indicates past) for the range parameter. Valid only on date pictures
with two-digit years.

range An integer constant in the range of zero (0) to ninety-nine (99) that specifies the
"Intellidate" century for the direction parameter. Valid only on date pictures with two-
digit years. If omitted, the default value is 80.

B Specifies that the format displays as blank when the value is zero.
Dates may be stored in numeric variables (usually LONG), a DATE field (for Btrieve compatibility), or
in a STRING declared with a date picture. A date stored in a numeric variable is called a "Clarion
Standard Date." The stored value is the number of days since December 28, 1800. The date picture
token converts the value into one of the date formats.

The century for dates in any picture with a two-digit year is resolved using "Intellidate" logic. Date
pictures that do not specify direction and range parameters assume the date falls in the range of the
next 20 or previous 80 years. The direction and range parameters allow you to change this default.
The direction parameter specifies whether the range specifies the future or past value. The opposite
direction then receives the opposite value (100-range) so that any two-digit year results in the correct
century.

For example, the picture @D1>60 specifies using the appropriate century for each year 60 years in
the future and 40 years in the past. If the current year is 1996, when the user enters "5/01/40," the
date is in the year 2040, and when the user enters "5/01/60," the date is in the year 1960.

For those date pictures which contain month names, the actual names are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

Example:
Picture Format Result
@D1 mm/dd/yy 10/31/59
@D1>40 mm/dd/yy 10/31/59
@D01 mm/dd/yy 01/01/95
@D2 mm/dd/yyyy 10/31/1959
@D3 mmm dd, yyyy OCT 31,1959
@D4 mmmmmmmmm dd, yyyy October 31, 1959
@D5 dd/mm/yy 31/10/59
@D6 dd/mm/yyyy 31/10/1959
@D7 dd mmm yy 31 OCT 59
@D8 dd mmm yyyy 31 OCT 1959
@D9 yy/mm/dd 59/10/31
@D10 yyyy/mm/dd 1959/10/31
@D11 yymmdd 591031
@D12 yyyymmdd 19591031
@D13 mm/yy 10/59
@D14 mm/yyyy 10/1959

58

@D15 yy/mm 59/10
@D16 yyyy/mm 1959/10
@D17 Windows Control Panel setting for Short Date
@D18 Windows Control Panel setting for Long Date Alternate separators

@D1. mm.dd.yy Period separator
@D2- mm-dd-yyyy Dash separator
@D5_ dd mm yy Underscore produces space separator
@D6' dd,mm,yyyy Grave accent produces comma separator

See Also:

Standard Date

FORMAT

DEFORMAT

Environment Files

59

Time Pictures
@Tn[s][B]

@T All time pictures begin with @T.

n Determines the time picture format. Time picture formats range from 1 through 8. A
leading zero (0) indicates zero-filled hours.

s A separation character. By default, colon (:) characters appear between the hour,
minute, and second components of certain time picture formats. The following s
indicators provide an alternate separation character for these formats.

 . (period) Produces periods
' (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

B Specifies that the format displays as blank when the value is zero.
Times may be stored in a numeric variable (usually a LONG), a TIME field (for Btrieve compatibility),
or in a STRING declared with a time picture. A time stored in a numeric variable is called a "Standard
Time." The stored value is the number of hundredths of a second since midnight. The picture token
converts the value to one of the eight time formats.

For those time pictures which contain string data, the actual strings are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

Example:
Picture Format Result
@T1 hh:mm 17:30
@T2 hhmm 1730
@T3 hh:mmXM 5:30PM
@T03 hh:mmXM 05:30PM
@T4 hh:mm:ss 17:30:00
@T5 hhmmss 173000
@T6 hh:mm:ssXM 5:30:00PM
@T7 Windows Control Panel setting for Short Time
@T8 Windows Control Panel setting for Long Time

 Alternate separators
@T1. hh.mm Period separator
@T1- hh-mm Dash separator
@T3_ hh mmXM Underscore produces space separator
@T4' hh,mm,ss Grave accent produces comma separator

See Also:

Standard Time

FORMAT

DEFORMAT

Environment Files

60

Special Characters
Initiators: ! Exclamation point begins a source code comment.

? Question mark begins a field equate label.
@ At sign begins a picture token.
* Asterisk begins a parameter passed by address in a MAP

prototype.
~ A leading tilde on a filename indicates a file linked into the project.

Terminators: ; Semi-colon is an executable statement separator.
CR/LF Carriage-return/Line-feed is an executable statement separator.
. Period terminates a data or code structure (a substitute for END).
| Vertical bar is the source code line continuation character.
Pound sign declares an implicit LONG variable.
$ Dollar sign declares an implicit REAL variable.

Double quote declares an implicit STRING variable.

Delimiters: () Parentheses enclose a parameter list.
[] Brackets enclose an array subscript list.
 Single quotes enclose a string constant.
{- } Curly braces enclose a repeat count in a string constant, or a

property parameter.
< > Angle brackets enclose an ASCII code in a string constant, or

indicate a parameter in a MAP prototype which may be omitted.
: Colon separates the start and stop positions of a string slice.
, Comma separates parameters in a parameter list.

Connecters: . Period is a decimal point used in numeric constants, or connects
a complex structure label to the label of one of its members.

: Colon connects a prefix to a label.
$ Dollar sign connects the WINDOW or REPORT label to a field

equate label in a controls property assignment expression.

Operators: + Plus sign indicates addition.
- Minus sign indicates subtraction.
* Asterisk indicates multiplication.
/ Slash indicates division.
% Percent sign indicates modulus division.
^ Carat indicates exponentiation.
< Left angle bracket indicates less than.
> Right angle bracket indicates greater than.
= Equal sign indicates assignment or equivalence.
~ Tilde indicates the logical (Boolean) NOT operator.
& Ampersand indicates concatenation.
&= Ampersand equal indicates reference assignment or reference

equivalence.

61

Expressions
An expression is a mathematical, string, or logical formula that produces a value. An expression may
be the source variable of an assignment statement, a parameter of a procedure, a subscript of an
array (a dimensioned variable), or the condition of an IF, CASE, LOOP, or EXECUTE structure.
Expressions may contain constant values, variables, and procedures which return values, all
connected by logical and/or arithmetic or string operators.

Expression Evaluation
Arithmetic Operators
Logical Operators
Numeric Constants
Numeric Expressions
String Constants
The Concatenation Operator
String Expressions
Implicit String Arrays and String Slicing
Logical Expressions

62

Expression Evaluation
Expressions are evaluated in the standard algebraic order of operations. The precedence of
operations is controlled by operator type and placement of parentheses. Each operation produces an
(internal) intermediate value used in subsequent operations. Parentheses may be used to group
operations within expressions. Expressions are evaluated beginning with the inner-most set of
parentheses and working through to the outer-most set.

Precedence levels for expression evaluation, from highest to lowest, and left-to-right within each level,
are:

Level 1 () Parenthetical Grouping
Level 2 - Unary Minus (Negative sign)
Level 3 procedure call Gets the RETURN value
Level 4 ^ Exponentiation
Level 5 * / % Multiplication, Division, Modulus Division
Level 6 + - Addition, Subtraction
Level 7 & Concatenation
Level 8 = <> Logical Comparisons
Level 9 NOT, AND, OR/XOR Boolean expressions

Expressions may produce numeric values, string values, or logical values (true/false evaluation). An
expression may contain no operators at all; it may be a single variable, constant value, or procedure
call which returns a value.

63

Arithmetic Operators
An arithmetic operator combines two operands arithmetically to produce an intermediate value. The
operators are:

+ Addition (A + B gives the sum of A and B)
- Subtraction (A - B gives the difference of A and B)
* Multiplication (A * B multiples A by B)
/ Division (A / B divides A by B)
^ Exponentiation (A ^ B raises A to power of B)
% Modulus Division (A % B gives the remainder of A divided by B)

64

Logical Operators
A logical operator compares two operands or expressions and produces a true or false condition.
There are two types of logical operators: conditional and Boolean. Conditional operators compare two
values or expressions. Boolean operators connect string, numeric, or logical expressions together to
determine true-false logic. Operators may be combined to create complex operators.

Conditional Operators = Equal sign
 < Less than

> Greater than

Boolean Operators NOT Boolean (logical) NOT
 ~ Tilde (logical NOT)
 AND Boolean AND
 OR Boolean OR
 XOR Boolean eXclusive OR

Combined operators <> Not equal
 ~= Not equal
 NOT = Not equal
 <= Less than or equal to
 =< Less than or equal to
 ~> Not greater than
 NOT > Not greater than
 >= Greater than or equal to
 => Greater than or equal to
 ~< Not less than
 NOT < Not less than

During logical evaluation, any non-zero numeric value or non-blank string value indicates a true
condition, and a null (blank) string or zero numeric value indicates a false condition.

Example:
Logical Expression Result
A = B True when A is equal to B
A < B True when A is less than B
A > B True when A is greater than B
A <> B, A ~= B, A NOT = B True when A is not equal to B
A ~< B, A >= B, A NOT < B True when A is not less than B
A ~> B, A <= B, A NOT > B True when A is not greater than B
~ A, NOT A True when A is null or zero
A AND B True when A is true and B is true
A OR B True when A is true, or B is true, or both are

true
A XOR B True when A is true or B is true, but not both.

65

Numeric Constants
Numeric constants are fixed numeric values. They may occur in data declarations, in expressions, and
as parameters of procedures or attributes. A numeric constant may be represented in decimal (base
10the default), binary (base 2), octal (base 8), hexadecimal (base 16), or scientific notation formats.
Formatting characters, such as dollar signs and commas, are not permitted in numeric constants; only
leading plus or minus signs and the decimal point are allowed.

Decimal (base ten) numeric constants may contain an optional leading minus sign (hyphen character),
an integer, and an optional decimal with a fractional component. Binary (base two) numeric constants
may contain an optional leading minus sign, the digits 0 and 1, and a terminating B or b character.
Octal (base eight) numeric constants contain an optional leading minus sign, the digits 0 through 7,
and a terminating O or o character. Hexadecimal (base sixteen) numeric constants contain an optional
leading minus sign, the digits 0 through 9, alphabet characters A through F (representing the numbers
10 through 15) and a terminating H or h character. If the left-most character is a letter A through F, a
leading zero must be used.

Example:
-924 !Decimal constants
76.346
+76.346
1011b !Binary constants
-1000110B
3403o !Octal constants
-7041312O
-1FFBh !Hexadecimal constants
0CD1F74FH

66

Numeric Expressions
Numeric expressions may be used as parameters of procedures, the condition of IF, CASE, LOOP, or
EXECUTE structures, or as the source portion of an assignment statement where the destination is a
numeric variable. A numeric expression may contain arithmetic operators and the concatenation
operator, but they may not contain logical operators. When used in a numeric expression, string
constants and variables are converted to numeric intermediate values. If the concatenation operator is
used, the intermediate value is converted to numeric after the concatenation occurs.

Example:
Count + 1 !Add 1 to Count
(1 - N * N) / R !N times N subtracted from 1 then divided by R
305 & 7854555 !Concatenate area code with phone number

See Also:

Data Conversion Rules

67

String Constants
A string constant is a set of characters enclosed in single quotes (apostrophes). The maximum length
of a string constant is 255 characters. Characters that cannot be entered from the keyboard may be
inserted into a string constant by enclosing their ASCII character codes in angle brackets (<>). ASCII
character codes may be represented in decimal, hexadecimal, binary, or octal numeric constant
format.

In a string constant, a left angle bracket (<) initiates a scan for a right angle bracket. Therefore, to
include a left angle bracket in a string constant requires two left angle brackets in succession. To
include an apostrophe as part of the value inside a string constant requires two apostrophes in
succession. Two apostrophes (''), with no characters (or just spaces) between them, represents a
null, or blank, string. Consecutive occurrences of the same character within a string constant may be
represented by repeat count notation. The number of times the character is to be repeated is placed
within curly braces ({- }) immediately following the character to repeat. To include a left curly brace ({-
) as part of the value inside a string constant requires two left curly braces ({-{-) in succession.

The ampersand (&) is always valid in a string constant. However, depending on the assignment's
destination, it may be interpreted as an underscore for a hot letter (for example, a PROMPT control's
display text). In this case, you double it up (&&) to end up with a single ampersand in the screen
display.

Example:
'string constant' !A string constant
'It''s a girl!' !With embedded apostrophe
'<27,15>' !Using decimal ASCII codes
'A << B' !With embedded left angle, A < B
'*{-20}' !Twenty asterisks, repeat-count notation
'' !A null (blank) string

68

The Concatenation Operator
The ampersand (&) concatenation operator is used to append one string or string variable to another.
The length of the resulting string is the sum of the lengths of the two values being concatenated.
Numeric data types may be concatenated with strings or other numeric variables or constants. In
many cases, the CLIP procedure should be used to remove any trailing spaces from a string being
concatenated to another string.

Example:
CLIP(FirstName) & ' ' Initial & '. ' & LastName !Concatenate full name
'TopSpeed Corporation' & ', Inc.' !Concatenate two constants

See Also:

CLIP

Numeric Expressions

Data Conversion Rules

FORMAT

69

String Expressions
String expressions may be used as parameters of procedures and attributes, or as the source portion
of an assignment statement when the destination is a string variable. String expressions may contain
a single string or numeric variable, or a complex combination of sub-expressions, procedures, and
operations.

Example:
StringVar STRING(30)
Name STRING(10)
Weight STRING(3)
Phone LONG
CODE
StringVar = 'Address:' & Cus:Address !Concatenate a constant and variable

StringVar = 'Phone:' & ' 305-' & FORMAT(Phone,@P###-####P)
 !Concatenate constant valuess

! and FORMAT procedure's return value

StringVar = Weight & 'lbs.' !Concatenate a constant and variable

See Also:

CLIP

The Concatentaion Operator

Data Conversion Rules

FORMAT

70

Implicit String Arrays and String Slicing
In addition to their explicit declaration, all STRING, CSTRING and PSTRING variables have an implicit
array declaration of one character strings, dimensioned by the length of the string. This is directly
equivalent to declaring a second variable as:

StringVar STRING(10)
StringArray STRING(1),DIM(SIZE(StringVar)),OVER(StringVar)

This implicit array declaration allows each character in the string to be directly addressed as an array
element, without the need of the second declaration. The PSTRING's length byte is addressed as
element zero (0) of the array, as is the first byte of a BLOB (the only two cases in Clarion where an
array has a zero element).

If the string also has a DIM attribute, this implicit array declaration is the last (optional) dimension of
the array (to the right of the explicit dimensions). The MAXIMUM procedure does not operate on the
implicit dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the "string slicing" technique.
This technique performs a similar function to the SUB procedure, but is much more flexible and
efficient. It is more flexible because a "string slice" may be used as either the destination or source
sides of an assignment statement, while the SUB procedure can only be used as the source. It is more
efficient because it takes less memory than either individual character assignments or the SUB
procedure.

To take a "slice" of the string, the beginning and ending character numbers are separated by a colon
(:) and placed in the implicit array dimension position within the square brackets ([]) of the string. The
position numbers may be integer constants, variables, or expressions (internally computed as LONG
base type). If variables are used, there must be at least one blank space between the variable name
and the colon separating the beginning and ending number (to prevent PREfix confusion).

Example:
Name STRING(15)
CONTACT STRING(15),DIM(4)
CODE
Name = 'Tammi' !Assign a value
Name[5] = 'y' ! then change fifth letter
Name[6] = 's' ! then add a letter
Name[0] = '<6>' ! and handle length byte
Name[5:6] = 'ie' ! and change a "slice" -- the fifth and sixth letters
Contact[1] = 'First' !Assign value to first element
Contact[1,2] = 'u' !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to first element 2nd & 3rd characters

71

Logical Expressions
Logical expressions evaluate true-false conditions in IF, LOOP UNTIL, and LOOP WHILE control
structures. Control is determined by the final result (true or false) of the expression. Logical
expressions are evaluated from left to right. The right operand of an AND, OR, or XOR logical
expression will only be evaluated if it could affect the result. Parentheses should be used to eliminate
ambiguous evaluation and to control evaluation precedence. The level or precedence for the logical
operators is as follows:

Level 1 Conditional operators
Level 2 ~, NOT
Level 3 AND
Level 4 OR, XOR

Example:
LOOP UNTIL KEYBOARD() !True when user presses any key
 !some statements
END

IF A = B THEN RETURN. !RETURN if A is equal to B

LOOP WHILE ~ Done# !Loop while false (Done# = 0)
 !some statements
END

IF A >= B OR (C > B AND E = D) THEN RETURN.
!True if a >= b, also true if

 ! both c > b and e = d.
 !The second part of the expression
 ! (after OR) is evaluated only if the
 ! first part is not true.

72

Simple Assignment Statements
destination = source

destination The label of a variable or data structure property.

source A numeric or string constant, variable, procedure, expression, or data structure
property.

The = sign assigns the value of source to the destination; it copies the value of the source expression
into the destination variable. If destination and source are different data types, the value the
destination receives from the source is dependent upon the Data Conversion Rules.

Example:
Name = 'JONES' !Variable = string constant
PI = 3.14159 !Variable = numeric constant
Cosine = SQRT(1 - Sine * Sine) !Variable = procedure return value
A = B + C + 3 !Variable = numeric expression
Name = CLIP(FirstName) & ' ' Initial & '. ' & LastName

!Variable = string expression

See Also:

Data Conversion Rules

73

Operating Assignment Statements
destination += source
destination -= source
destination *= source
destination /= source
destination ^= source
destination %= source

destination Must be the label of a variable. This may not be any type property (window, control,
report, etc.).

source A constant, variable, procedure, or expression.
Operating assignment statements perform their operation on the destination and source, assigning the
result to the destination. Operating assignment statements are more efficient than their equivalent
operations.

Example:
 Operating AssignmentFunctional Equivalent
 A += 1 A = A + 1
 A -= B A = A - B
 A *= -5 A = A * -5
 A /= 100 A = A / 100
 A ^= I + 1 A = A ^ (I + 1)
 A %= 7 A = A % 7

74

BCD Operations and Procedures
Clarion has a Binary Coded Decimal (BCD) library of operations and procedures that execute in a
manner similar to the manner in which decimal arithmetic is performed on paper. These operations
use internal intermediate values with 31 digits accuracy on both sides of the decimal point.

The big advantage of the BCD operations is that it is very easy to "see" what is happening because
they execute just as you would with pencil and paper. Simply imagine doing the computation long
hand and throwing away numbers that go off the end of the page (rounding to the right).

Having 31 fixed decimal places either side of the decimal point there are numbers that cannot be
represented in a BCD system which can be represented by a REAL. Therefore, understanding what is
going on is useful.

Generally, the only cases where underflow will affect you is in division operations, usually when
dividing by a multiple of 3. For example:

100000/3 = 33333.3333333333333333333333333333333
(100000/3)-INT(100000/3)*100000 =
33333.3333333333333333333333333300000

BCD computation times are very data sensitive; the time taken is proportional to how long the
computation would take you by hand. Therefore, the longer the numbers involved, the longer the
execution times. However, standard "tricks of the trade" (such as multiplying by a power of ten by
shifting the decimal point) are spotted, making the BCD libraries fast in real world applications.

The following operations may execute as BCD operations:

Addition (+), Subtraction (-), Multiplication (*)
Performed as a BCD operation when neither operand has a REAL Base Type (both
are LONG or DECIMAL) and one has the DECIMAL Base Type. Any digits
appearing to the right of 1e31 disappear (wrap), and any to the left of 1e-30 are
rounded up.

Division (/) Performed as a BCD operation when neither operand has a REAL Base Type (both
are LONG or DECIMAL). Any digits appearing to the right of 1e31 disappear (wrap),
and any to the left of 1e-30 are rounded up.

Exponentiation (^) Performed as a BCD operation when the first operand is a
DECIMAL or LONG Base Type and the second operand is a LONG Base Type. Any
digits appearing to the right of 1e31 disappear (wrap), and any to the left of 1e-30 are
rounded.

ABS() Removes the sign from a DECIMAL variable or intermediate value and returns the
DECIMAL value.

INT() Truncates a DECIMAL intermediate value and returns a DECIMAL value.

ROUND() If the second parameter is a LONG or DECIMAL Base Type, then rounding is
performed as a BCD operation which returns a DECIMAL value. ROUND is very
efficient as a BCD operation and should be used to compare REALs to DECIMALs at
decimal width.

	INDEX Funktionsbeschreibungen
	Mathematical Procedures	3
	ABS (return absolute value)
	INRANGE (check number within range)
	INT (truncate fraction)
	LOGE (return natural logarithm)
	LOG10 (return base 10 logarithm)
	RANDOM (return random number)
	ROUND (return rounded number)
	SQRT (return square root)

	Trigonometric Procedures
	SIN (return sine)
	COS (return cosine)
	TAN (return tangent)
	ASIN (return arcsine)
	ACOS (return arccosine)
	ATAN (return arctangent)

	String Procedures
	ALL (return repeated characters)
	CENTER (return centered string)
	CHOOSE (return chosen value)
	CHR (return character from ASCII)
	CLIP (return string without trailing spaces)
	DEFORMAT (return unformatted numbers from string)
	FORMAT (return formatted numbers into a picture)
	INLIST (return entry in list)
	INSTRING (return substring position)
	LEFT (return left justified string)
	LEN (return length of string)
	LOWER (return lower case)
	NUMERIC (return numeric string)
	RIGHT (return right justified string)
	SUB (return substring of string)
	UPPER (return upper case)
	VAL (return ASCII value)

	Bit Manipulation Procedures
	BAND (return bitwise AND)
	BOR (return bitwise OR)
	BXOR (return bitwise exclusive OR)
	BSHIFT (return shifted bits)

	Date / Time Procedures
	Standard Date
	Standard Time
	TODAY (return system date)
	CLOCK (return system time)
	DAY (return day of month)
	MONTH (return month of date)
	YEAR (return year of date)
	AGE (return age from base date)

	Picture Tokens
	Numeric and Currency Pictures
	Scientific Notation Pictures
	String Pictures
	Date Pictures
	Time Pictures

	Special Characters
	Expressions
	Expression Evaluation
	Arithmetic Operators
	Logical Operators
	Numeric Constants
	Numeric Expressions
	String Constants
	The Concatenation Operator
	String Expressions
	Implicit String Arrays and String Slicing
	Logical Expressions
	Simple Assignment Statements
	Operating Assignment Statements

	BCD Operations and Procedures

